New Vacuum Solutions for Quadratic Metric–affine Gravity

Vedad Pašić

27 August 2008

Vedad Pašić New Vacuum Solutions for Quadratic Metric–affine Gravity

Structure of the thesis

Vedad Pašić New Vacuum Solutions for Quadratic Metric–affine Gravity

크

Introduction

<日</td>

- Introduction
- PP-waves with torsion

< 回 > < 回 > < 回

- Introduction
- PP-waves with torsion
- New vacuum solutions for quadratic metric-affine gravity

< 同 > < 回 > < 回

- Introduction
- PP-waves with torsion
- New vacuum solutions for quadratic metric-affine gravity
- Discussion

Vedad Pašić New Vacuum Solutions for Quadratic Metric–affine Gravity

< 同 > < 回 > < 回

- Introduction
- PP-waves with torsion
- New vacuum solutions for quadratic metric-affine gravity
- Discussion
- Appendices

< 回 > < 回 > < 回 >

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

크

 Spacetime considered to be a connected real 4–manifold *M* equipped with a Lorentzian metric *g* and an affine connection Γ, i.e.

$$\nabla_{\mu} u^{\lambda} = \partial_{\mu} u^{\lambda} + \Gamma^{\lambda}{}_{\mu\nu} u^{\nu}.$$

▲□ → ▲ □ → ▲ □ →

Spacetime considered to be a connected real 4–manifold M equipped with a Lorentzian metric g and an affine connection Γ, i.e.

$$\nabla_{\mu} u^{\lambda} = \partial_{\mu} u^{\lambda} + \Gamma^{\lambda}{}_{\mu\nu} u^{\nu}.$$

 Characterisation by an *independent* linear connection Γ distinguishes MAG from GR - g and Γ viewed as two totally independent quantities.

< 回 > < 回 > < 回 >

 Spacetime considered to be a connected real 4–manifold *M* equipped with a Lorentzian metric *g* and an affine connection Γ, i.e.

$$\nabla_{\mu}\boldsymbol{u}^{\lambda} = \partial_{\mu}\boldsymbol{u}^{\lambda} + \Gamma^{\lambda}{}_{\mu\nu}\boldsymbol{u}^{\nu}.$$

- Characterisation by an *independent* linear connection Γ distinguishes MAG from GR - g and Γ viewed as two totally independent quantities.
- 10 independent components of g_{µν} and the 64 connection coefficients Γ^λ_{µν} are the unknowns of MAG

(日本) (日本) (日本)

 Spacetime considered to be a connected real 4–manifold *M* equipped with a Lorentzian metric *g* and an affine connection Γ, i.e.

$$\nabla_{\mu}\boldsymbol{u}^{\lambda}=\partial_{\mu}\boldsymbol{u}^{\lambda}+\boldsymbol{\Gamma}^{\lambda}{}_{\mu\nu}\boldsymbol{u}^{\nu}.$$

- Characterisation by an *independent* linear connection Γ distinguishes MAG from GR - g and Γ viewed as two totally independent quantities.
- 10 independent components of g_{µν} and the 64 connection coefficients Γ^λ_{µν} are the unknowns of MAG
- **Definition.** We call a spacetime $\{M, g, \Gamma\}$ *Riemannian* if the connection is Levi–Civita (i.e. $\Gamma^{\lambda}_{\mu\nu} = \left\{ \begin{matrix} \lambda \\ \mu\nu \end{matrix} \right\}$), and *non-Riemannian* otherwise.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Quadratic metric-affine gravity

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

▲□ ▶ ▲ □ ▶ ▲ □

Action is

$$\mathcal{S} := \int q(\mathcal{R}),$$

where q(R) is a Lorentz invariant purely quadratic form on curvature.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Action is

$$\mathcal{S} := \int q(\mathcal{R}),$$

where q(R) is a Lorentz invariant purely quadratic form on curvature.

The quadratic form q(R) has 16 R² terms with 16 real coupling constants.

Action is

$$\mathcal{S} := \int q(\mathcal{R}),$$

where q(R) is a Lorentz invariant purely quadratic form on curvature.

- The quadratic form q(R) has 16 R² terms with 16 real coupling constants.
- Action conformally invariant, unlike Einstein–Hilbert.

• Im • • m • • m

Quadratic metric-affine gravity

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

▲□ ▶ ▲ □ ▶ ▲ □

 Independent variation of g and Γ produces the system of Euler–Lagrange equations

$$\partial S/\partial g = 0,$$
 (1)

$$\partial S/\partial \Gamma = 0.$$
 (2)

▲□ → ▲ □ → ▲ □ →

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

Einstein spaces (Yang, Mielke);

- Einstein spaces (Yang, Mielke);
- pp-waves with parallel Ricci curvature (Vassiliev);

- Einstein spaces (Yang, Mielke);
- pp-waves with parallel Ricci curvature (Vassiliev);
- Certain explicitly given torsion waves (Singh and Griffiths);

< 回 > < 回 > < 回 >

- Einstein spaces (Yang, Mielke);
- pp-waves with parallel Ricci curvature (Vassiliev);
- Certain explicitly given torsion waves (Singh and Griffiths);
- Triplet ansatz (Hehl, Macías, Obukhov, Esser, ...);

< 回 > < 回 > < 回 >

- Einstein spaces (Yang, Mielke);
- pp-waves with parallel Ricci curvature (Vassiliev);
- Certain explicitly given torsion waves (Singh and Griffiths);
- Triplet ansatz (Hehl, Macías, Obukhov, Esser, ...);
- Minimal pseudoinstanton generalisation (Obukhov).

Classical pp-waves

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

크

▶ **Definition.** A *pp-wave* is a Riemannian spacetime which admits a non-vanishing *parellel* spinor field ($\nabla \chi = 0$).

- ▶ **Definition.** A *pp-wave* is a Riemannian spacetime which admits a non-vanishing *parellel* spinor field ($\nabla \chi = 0$).
- Definition. A pp-wave is a Riemannian spacetime whose metric can be written locally in the form

$$\mathrm{d}s^2 = 2\,\mathrm{d}x^0\,\mathrm{d}x^3 - (\mathrm{d}x^1)^2 - (\mathrm{d}x^2)^2 + f(x^1,x^2,x^3)\,(\mathrm{d}x^3)^2$$

in some local coordinates.

- ▶ **Definition.** A *pp-wave* is a Riemannian spacetime which admits a non-vanishing *parellel* spinor field ($\nabla \chi = 0$).
- Definition. A pp-wave is a Riemannian spacetime whose metric can be written locally in the form

$$\mathrm{d}s^2 = 2\,\mathrm{d}x^0\,\mathrm{d}x^3 - (\mathrm{d}x^1)^2 - (\mathrm{d}x^2)^2 + f(x^1,x^2,x^3)\,(\mathrm{d}x^3)^2$$

in some local coordinates.

Well known spacetimes in GR, simple formula for curvature
only trace free Ricci and Weyl pieces.

• (1) • (1) • (1)

Generalised pp-waves

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

크

Generalised pp-waves

Consider the polarized Maxwell equation

 $*dA = \pm i dA.$

Vedad Pašić New Vacuum Solutions for Quadratic Metric–affine Gravity

< 同 > < 三 > < 三

Consider the polarized Maxwell equation

$$*dA = \pm i dA.$$

 Plane wave solutions of this equation can be written down as

$$A = h(\varphi) m + k(\varphi) I,$$

$$\varphi : M \to \mathbb{R}, \qquad \varphi(x) := \int I \cdot dx.$$

伺 ト イ ヨ ト イ ヨ

Consider the polarized Maxwell equation

$$*dA = \pm i dA.$$

 Plane wave solutions of this equation can be written down as

$$A = h(\varphi) m + k(\varphi) I,$$

$$\varphi : M \to \mathbb{R}, \qquad \varphi(x) := \int I \cdot dx.$$

 Definition A generalised pp-wave is a metric compatible spacetime with pp-metric and torsion

$$T:=\frac{1}{2}\operatorname{Re}(A\otimes dA).$$

< 同 > < 回 > < 回 >

Generalised pp-waves

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

크

Curvature of a generalised pp-wave is

$$R = -\frac{1}{2}(I \wedge \{\nabla\}) \otimes (I \wedge \{\nabla\})f + \frac{1}{4}\operatorname{Re}\left((h^2)''(I \wedge m) \otimes (I \wedge m)\right).$$

• (1) • (1) • (1)

Curvature of a generalised pp-wave is

$$R = -\frac{1}{2}(I \wedge \{\nabla\}) \otimes (I \wedge \{\nabla\})f + \frac{1}{4}\operatorname{Re}\left((h^2)''(I \wedge m) \otimes (I \wedge m)\right).$$

Torsion of a generalised pp-wave is

$$T = \operatorname{Re}\left((a \ l + b \ m) \otimes (l \wedge m)\right),$$

where

$$a := \frac{1}{2} h'(\varphi) k(\varphi), \quad b := \frac{1}{2} h'(\varphi) h(\varphi).$$

• (1) • (1) • (1)

Main result of the thesis

Vedad Pašić New Vacuum Solutions for Quadratic Metric–affine Gravity

Theorem Generalised pp-waves of parallel Ricci curvature are solutions of the field equations (1) and (2).

• (1) • (1) • (1)

- Theorem Generalised pp-waves of parallel Ricci curvature are solutions of the field equations (1) and (2).
- ► In special local coordinates, 'parallel Ricci curvature' is written as $f_{11} + f_{22} = \text{const.}$

▲□ → ▲ □ → ▲ □ →

- Theorem Generalised pp-waves of parallel Ricci curvature are solutions of the field equations (1) and (2).
- ► In special local coordinates, 'parallel Ricci curvature' is written as $f_{11} + f_{22} = \text{const.}$
- Generalised pp-waves of parallel Ricci curvature admit a simple explicit description.

• (10) • (10)

Outline of the proof

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

크

Proof by 'brute force'.

<日</td>

- Proof by 'brute force'.
- We write down the field equations (1) and (2) for general metric compatible spacetimes and substitute the formulae for torsion, Ricci and Weyl into these.

A (1) × (2) × (3)

- Proof by 'brute force'.
- We write down the field equations (1) and (2) for general metric compatible spacetimes and substitute the formulae for torsion, Ricci and Weyl into these.
- Together with $\nabla Ric = 0$, we get the result.

- Proof by 'brute force'.
- We write down the field equations (1) and (2) for general metric compatible spacetimes and substitute the formulae for torsion, Ricci and Weyl into these.
- Together with $\nabla Ric = 0$, we get the result.
- This result was first presented in : "PP-waves with torsion and metric affine gravity", 2005 V. Pasic, D. Vassiliev, Class. Quantum Grav. 22 3961-3975.

A (1) × (2) × (3)

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

æ

Curvature of generalised pp-waves is split.

• (10) • (10)

- Curvature of generalised pp-waves is split.
- Torsion and torsion generated curvature are waves traveling at the speed of light.

A (1) × (2) × (3)

- Curvature of generalised pp-waves is split.
- Torsion and torsion generated curvature are waves traveling at the speed of light.
- Underlying pp-space can be viewed as the 'gravitational imprint' created by wave of some massless field.

- Curvature of generalised pp-waves is split.
- Torsion and torsion generated curvature are waves traveling at the speed of light.
- Underlying pp-space can be viewed as the 'gravitational imprint' created by wave of some massless field.
- Mathematical model for neutrino?

Vedad Pašić New Vacuum Solutions for Quadratic Metric-affine Gravity

▲□ ▶ ▲ □ ▶ ▲ □

Neutrino field in metric compatible spacetime described by

$$S_{\text{neutrino}} := 2i \int \left(\xi^a \sigma^{\mu}_{ab} \left(\nabla_{\mu} \bar{\xi}^{b} \right) - \left(\nabla_{\mu} \xi^a \right) \sigma^{\mu}_{ab} \bar{\xi}^{b} \right),$$

Neutrino field in metric compatible spacetime described by

$$S_{\text{neutrino}} := 2i \int \left(\xi^{a} \sigma^{\mu}{}_{a\dot{b}} \left(\nabla_{\mu} \bar{\xi}^{\dot{b}} \right) - \left(\nabla_{\mu} \xi^{a} \right) \sigma^{\mu}{}_{a\dot{b}} \bar{\xi}^{\dot{b}} \right),$$

In a generalised pp-space Weyl's equation takes form

$$\sigma^{\mu}_{\ ab}\{\nabla\}_{\mu}\,\xi^{a}=\mathbf{0}.$$

向下 イヨト イヨ

Neutrino field in metric compatible spacetime described by

$$S_{\text{neutrino}} := 2i \int \left(\xi^{a} \sigma^{\mu}{}_{a\dot{b}} \left(\nabla_{\mu} \bar{\xi}^{\dot{b}} \right) - \left(\nabla_{\mu} \xi^{a} \right) \sigma^{\mu}{}_{a\dot{b}} \bar{\xi}^{\dot{b}} \right),$$

In a generalised pp-space Weyl's equation takes form

$$\sigma^{\mu}_{\ ab}\{\nabla\}_{\mu}\,\xi^{a}=\mathbf{0}.$$

 Constructed pp-wave type solutions of Einstein-Weyl model

$$egin{aligned} S_{\mathrm{EW}} &:= k \int \mathcal{R} + S_{\mathrm{neutrino}}, \ \partial S_{\mathrm{EW}} / \partial g &= 0, \ \partial S_{\mathrm{EW}} / \partial \xi &= 0. \end{aligned}$$

< 同 > < 回 > < 回 > <